US 2007/0233709 Al

such as the following: attachment of lifecycles, starting
workflows, sending notifications, auto-attribution, access
control list assignment, custom security assignment, reten-
tion policy assignment, other custom-defined actions. In
some embodiments, at instantiation, the smart container
template provides a default configuration. If permissions and
policies allow, these defaults can be overridden for the new
instance. In some embodiments, the instance is saved as a
new template. In some embodiments, if defaults have been
overridden during instantiation or if changes have been
made for the instance that was started using a template, users
will have the option to save these changes to the source
template or to save them to a new template. In 906, instan-
tiation is completed. Instantiation is complete after all
instantiation actions and policies have successfully run, and
the instance model has been flagged as a “runtime” model.
In some embodiments, all instantiation related actions are
logged.

[0025] FIG. 10 is a flow diagram illustrating an embodi-
ment of a process for applying a smart container policy
during runtime. In 1000, an object is contributed to a smart
container. Contribution to a Smart Container may happen
through user interactions or through automated processes.
Objects may be contributed one by one or through high
ingestion operations. In various embodiments, users may
explicitly link objects into a folder that is part of the smart
container instance; an object may be auto-categorized, based
on its content and/or attribute values to a folder that is part
of the smart container instance; an object may be associated
with a root-level smart container object that has a policy
which further-categorizes the object and places the docu-
ment in the appropriate spot within the smart container
structure; or an object may be created as a member of a smart
container during instantiation—the nodes of the model
become members of the smart container at runtime.

[0026] 1In 1002, a policy is executed. A policy is a discrete
bit of business logic that is defined to execute based on some
event or object operation. It may be implemented as an
aspect attached to an object, such as by modifying an
instance of an implementation object to add to that instance
one or more methods or attributes not included in every
object of that type; as a type-based behavior implemented by
modifying or extending a base implementation object to
include additional type-based behaviors; or script. In some
embodiments, out-of-the-box smart containers will include
several common policies and will provide a framework for
creating other policies. All users and programmatic manipu-
lation of an object in the managed content system will honor
the policies that have been applied to that object. Smart
container configuration associates policies explicitly—for
example, a policy is associated directly with the object
configuration or object class; a policy is associated with a
relation type and the object is referenced by a relationship of
that type; or a policy is inherited by the object from a parent
object. A policy could have been associated with an object
in a number of ways in addition to those associated explicitly
through smart container configuration—for example, a
policy is associated with the user object, role, or group; a
policy associated with an object type; a policy is associated
with the document template that a document was created
from; a policy related to format; or a policy that is program-
matically applied to an object or is user selected. A policy
has a number of elements including a trigger which defines
when a policy executes, a declarative or code-based set of

Oct. 4, 2007

conditions that will be evaluated at execution time to true or
false, and an outcome (e.g., positive, negative, and error). A
policy can manage conflicts. In the case where multiple
policies may be associated with an object either directly or
through inheritance, the system detects that there is a policy
conflict (e.g., an object has multiple policies of the same
type—tfor example two security or two versioning policies).
The appropriate conflict resolution technique is applied
including include 1) one policy takes precedence and only
that policy is applied, 2) policies are applied sequentially, or
3) an error is indicated because the conflict cannot be
resolved.

[0027] In 1004, interactions are executed. At runtime,
users and programs interact with a smart container and its
contents. Interactions include viewing and operating on
objects controlled by the smart container configuration.
Viewing will display information regarding a smart con-
tainer object in a manner as indicated by the viewing policy.
For example, email is viewed in a split window display with
one window containing in box, out box, and junk box
folders, another window listing the recent inbox emails, and
another window showing the contents of a particular email.
Views can be different dependent on the object, the user, the
role of the user, the security policy, or any other appropriate
criteria. In various embodiments, operations for smart con-
tainers include one or more of the following: fill a place-
holder with an actual document object; attach a policy to an
object; remove a policy from an object; add a document to
an smart container; remove a document from an smart
container; freeze smart container; version smart container;
lock/unlock smart container; export smart container; copy
smart container; check-out/check-in smart container; cancel
smart container checkout; replicate smart container; and/or
make smart container reference. Also, objects governed by
a smart container may be operated on in any of the usual
ways, i.e. copying, moving, versioning, saving, get file, set
file, set attribute, get attribute, lifecycle operations, attach to
workflow, creation, deletion, etc. However, because the
object is governed by a smart container configuration, these
operations may be restricted, modified, overridden, or
extended in some way by the policies on the object.

[0028] Although the foregoing embodiments have been
described in some detail for purposes of clarity of under-
standing, the invention is not limited to the details provided.
There are many alternative ways of implementing the inven-
tion. The disclosed embodiments are illustrative and not
restrictive.

What is claimed is:
1. A method for managing content comprising:

receiving a definition of a logical structure configured to
manage associated content; and

applying to an item of content associated with an instance
of the logical structure a policy or operation specified
by the definition.

2. A method as in claim 1, further comprising creating the
instance of the logical structure.

3. A method as in claim 1, further comprising creating the
instance of the logical structure using a template.

4. A method as in claim 1, further comprising creating the
instance of the logical structure using a template wherein the
template is configure to propagate changes to the template
by one of the following: to propagate template changes to



